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A Duffing oscillator is driven by a sum ofN chaotic time series. These time series are solutions of the
undriven Duffing equation. It is shown thatN=1 is sufficient to render the fluctuation theorem[Gallavotti and
Cohen, Phys. Rev. Lett.74, 2694(1995); Gallavotti, J. Math. Phys.41, 4061(2000); Evans and Searles, Adv.
Phys. 51, 1529(2002)] for the powerJt averaged within intervals of lengtht. In particular, the probabilities
psJtd follow a nearly Gaussian distribution. Also, lnfpsJtd /ps−Jtdg versusJt can be fitted by strikingly linear
functions, the slopes being proportional tot for larget. These results indicate that validity of the fluctuation
theorem requires neither a many-particle system nor a stochastic process, which are requirements used in
previous works.
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I. INTRODUCTION

The fluctuation theorem(FT) derived by Gallavotti and
Cohen[1] has been considered in literature as a generaliza-
tion of the second law of thermodynamics for finite systems.
(See also the reviews[2,3].) One of its formulations is

psJtd
ps− Jtd

= eJtt/bt, s1d

wherepsJtd is the probability of the mean fluxJt (of heat,
momentum, work, etc.) during the timet. Here, we consider
the mean flux of the workWt , i.e., the mean powerJt

=Wt /t: −Wt is the work performed by the system withint.
bt approaches a constant valueb` as t→`. b` has been
considered as an effective “temperature” of a system out of
equilibrium (see e.g.,[4] ).

The FT was proven by considering time reversible
(highly) chaotic Anosov systems consisting of many par-
ticles. The theorem had been shown to hold for shear-flow
simulations[5]. An experimental verification was reported
for turbulent Rayleigh-Benard flow[6]. Further experimental
evidence was given by following the trajectory of a Brown-
ian particle captured in an optical trap that is translated rela-
tive to the surrounding water molecules[7,8]. Numerical
verification of the FT was achieved by simulations of chains
of coupled nonlinear oscillators[9,10], of an electrical con-
duction device[11], of the shell model of turbulence[4], and
of the Burridge-Knopoff earthquake model consisting of
chains of blocks connected by springs[4].

The FT has been considered as a bridge between time-
reversible microscopic equations of mechanics and the time-
irreversible macroscopic equations of thermodynamics[8].
In this context, it is remarkable that there are versions of the
FT which also hold for stochastic processes certainly not
being described by reversible trajectories. One example is a
FT formulated by Kurchan for certain diffusion processes
[12]. That FT was extended to general Markov processes by

Lebowitz and Cohen[13]. Recently, Gaspard[14] derived a
FT in the framework of the master equation by Nicoliset al.
(see references in[14]), which was applied to describe jumps
in a bistable chemical reaction. Fluctuation theorems de-
scribing a dragged Brownian particle[15] and electric cir-
cuits [16] were also derived from stochastic equations. Dis-
cussions on the role of stochasticity, as compared to that of
microscopic reversibility, are given in[8,13,17] and refer-
ences therein.

In all investigated formulations of the FT so far, the
source of disorder has been a large number of particles(or
elements in a chain), or a stochastic process[12–16]. In con-
trast, we will consider here a systemS consisting of a single
deterministically chaotic particle with three degrees of free-
dom. S is driven chaotically by a signal obtained from the
undrivenS.

II. THE MODEL

We consider a driven chaotic oscillator with a single par-
ticle, described by

mẍ+ aẋ = Fsx,td +
1

N
o
n=1

N

jẍ̃n. s2d

The forceFsx,td is that of a Duffing oscillator, i.e.,

Fsx,td = A cossvtd − ] V/] x, s3d

V = x4/4 − x2/2. s4d

Settingm=1, a=0.25,A=0.38,v=1, andj=0, this oscilla-
tor is chaotic. For the driving of this chaotic system, we set

x̃nstd = xj=0st − fnd. s5d

In other words, thex̃n are obtained by integration of Eqs.
(2)–(4) with j=0. The phase shiftsfn are introduced in order
to avoid thex̃n being correlated with each other and withx.
We setfn=nT, whereT=106. This avoidance of correlations
could as well be accomplished withfn=0 by a proper choice
of different initial conditions for thex̃n andx.
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If not stated otherwise, driving was performed withj=1.
After allowing transients to die away, we set the total time to
1.43107 intervals of lengtht and determined the mean
powerJt in each interval by

Jt =
1

t
E

t

t+t

Fẋdt. s6d

Integration was performed with a Gear predictor-corrector
algorithm of fifth order with an integration time step ofDt
=10−4.

III. RESULTS AND DISCUSSION

SettingN=1, i.e., assuming only one chaotic driving term
in Eq. (2), we obtained the probability distributions ofJt

shown in Fig. 1. Here,Jt,0 signifies work performed by the
system within the timet. The negative parts of the curves
clearly become smaller ast increases, leading to the well-
known “classical” second law of thermodynamics. The dis-
tributions in Fig. 1 yielded plots of lnfpsJtd /ps−Jtdg versus
Jt, which are exemplified in Fig. 2(a). We obtained strikingly
linear relationships, as in the original formulation of the FT
[1–3].

According to Eq.(1), the slopesSt of fitted straight lines
[exemplified in Fig. 2(a)] should be given bySt=t /bt. We
thus plottedbt=t /St versust. This is shown in Fig. 2(b),
where we see a monotonically decreasing dependencebtstd,
saturating at larget to an effective “temperature”b`, as has
also been obtained inRC circuits with noise[16], in a tur-
bulent fluid [6], in the shell model of turbulence, and in the
Burridge-Knopoff earthquake model[4]. A constantbt for
larget also appears in the FT in its original form[1–3].

In Fig. 2(c) we show the effective “temperature”b` as a
function of the driving amplitudej. We clearly see thatb`

increases as one increases the energy injected into the sys-
tem. At least from that point of view, the definition of a
“temperature” makes some sense, although we are dealing
here with a dissipative system out of equilibrium consisting
of only one particle.

In Fig. 3(b), we show probability distributions which are
normalized by plottingpsJtdst versus J̃t=sJt−kJtld /st ,
wherest is the standard deviation ofJt. Figure 3(b) shows
that these normalized distributions are independent oft. Fur-
thermore, they roughly follow a Gaussian distribution, as has

FIG. 1. Probability distribution function of the mean powerJt .
t=16.3ssd, 20.8shd, 23.8s* d, 28.2s3d, and 34.1s+d.

FIG. 2. (a) lnfpsJtd /ps−Jtdg vs Jt , as obtained from the prob-
ability distributions shown in Fig. 1.(b) bt=t /St vs t. The St are
the slopes of straight lines fitted to plots exemplified in(a).
bt reaches a saturating value for larget. (c) Saturating valueb`

(bt for large t) vs the amplitudej of the chaotic driving withN
=1.
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been reported for other simulations and for experiments
[4,6,15].

The recent development of “superstatistics”[18,19], ac-
counting for fluctuations of the effective temperature in a
Gaussian distribution leads us to correct our fit to the points
for t=43.1 in Fig. 3(b) (circles). We did so by assuming a
quadratic correction term(see[18] ) of the probability func-
tion, obtaining a reduction of the sum of squares of residuals
from 0.018 [no correction; full line in Fig. 3(b)] to 0.012
(correction with an entropic indexq=1.2). A further im-
provement of the fit, considering the cubic term and specific
types of superstatistics[18], was not possible because of the
asymmetry of our probability function owing to limitations
of computing time.

So far we assumedN=1. It thus remains to examine the
effect of differentN. For N=2, i.e., for two chaotic driving
terms in Eq.(2), we obtained the same qualitative behavior
as that depicted in Figs. 1 and 2, i.e., forN=1. In other
words, chaoticity is sufficiently strong with one single uncor-
related chaotic driving. This is exemplified in Fig. 3(c)
sN=2d, as compared with Fig. 3(b) sN=1d. In contrast, set-
ting j=0, i.e., assuming no chaotic driving, we do not obtain
results comparable to those presented above[see Fig. 3(a)];
these distributions were found to be unaffected by doubling
the number of evaluated time intervals of lengtht. The ir-
regular peaks in each distribution function in Fig. 3(a) are
invariant and clearly related to the dynamical properties of
the Duffing equation, while the addition of uncorrelated
chaos smoothens out these many peaks, rendering a nearly
Gaussian distribution[see Figs. 3(b) and 3(c)].

IV. CONCLUSIONS

In the derivation of the FT in[1], a many-particle, time
reversible, chaotic Asonov system was assumed. It had al-
ready been demonstrated that the FT is also valid for dissi-
pative systems[4–8]. Furthermore, it was also shown that a
many-particle system is not necessary if stochasticity is as-
sumed[12–16].

We could show here that a FT is obtained by considering
a single deterministically chaotic particle with three degrees
of freedom, which is driven by deterministic chaos. The sim-
plicity of this system is even more striking if one considers
that our driving by deterministic chaos is taken from the
trajectory of the same particle in the absence of driving. It is
left as a future task to find general conditions for a fluctua-
tion theorem describing a single, chaotically oscillating, de-
terministic particle, such as that investigated here.
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FIG. 3. Normalized probability functionpsJtdst vs the reduced

variable J̃t=sJt−kJtld /st. st: standard deviation ofJt (a) j=0;
t=7.1 ssd, 13.4shd, 19.6s* d, and 25.8s3d. (b) and (c)
t=16.3s3d and 43.1ssd; the functions roughly collapse into a
Gaussian curve(full line) with zero mean and unit standard devia-
tion. (b) N=1. (c) N=2.
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