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A Duffing oscillator is driven by a sum dfl chaotic time series. These time series are solutions of the
undriven Duffing equation. It is shown thit=1 is sufficient to render the fluctuation theor¢@allavotti and
Cohen, Phys. Rev. Letf74, 2694(1995; Gallavotti, J. Math. Phys41, 4061(2000; Evans and Searles, Adv.
Phys. 51, 1529(2002] for the powerJ, averaged within intervals of length In particular, the probabilities
p(J,) follow a nearly Gaussian distribution. Also,[(J,)/p(-J,)] versusJ, can be fitted by strikingly linear
functions, the slopes being proportional#tdor large 7. These results indicate that validity of the fluctuation
theorem requires neither a many-particle system nor a stochastic process, which are requirements used in
previous works.
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I. INTRODUCTION Lebowitz and Cohefil3]. Recently, GasparfiL4] derived a

The fluctuation theoreniFT) derived by Gallavotti and FTin tr;e framework of trr:.e k:naster eqlt_Jadtion dby Ni%@t.al'
Cohen[1] has been considered in literature as a generaliza(See references ifi4]), which was applied to describe jumps

tion of the second law of thermodynamics for finite systems.In ?‘_b'Stab'e chemical reaction. Fluctuatlon theo_rem_s de-
(See also the review,3].) One of its formulations is SCT'b'”g a dragged Bro_wman particlas] af‘d elect_rlc cir
cuits [16] were also derived from stochastic equations. Dis-

pJ,) _ 3,78, 1) cussions on the role of stochasticity, as compared to that of
p(-J.) =€ ' microscopic reversibility, are given if8,13,17 and refer-
) . ences therein.

wherep(J,) is the probability of the mean flud. (of heat, In all investigated formulations of the FT so far, the
momentum, work, etg.during the timer. Here, we consider ggyrce of disorder has been a large number of partices
the mean flux of the workW., i.e., the mean powed.  glements in a chajnor a stochastic proce§t2—16. In con-
=W,/ 7. -W. is the work performed by the system within {45t we will consider here a systeBreonsisting of a single
B. approaches a constant vale as 7—=. B, has been geterministically chaotic particle with three degrees of free-

considered as an effective “temperature” of a system out ofjom. S is driven chaotically by a signal obtained from the
equilibrium (see e.g.[4] ). undrivens.

The FT was proven by considering time reversible
(highly) chaotic Anosov systems consisting of many par-

ticles. The theorem had been shown to hold for shear-flow Il. THE MODEL
simulations[5]. An experimental verification was reported i ) _ ) _ )
for turbulent Rayleigh-Benard floy6]. Further experimental We consider a driven chaotic oscillator with a single par-

evidence was given by following the trajectory of a Brown- ticle, described by
ian particle captured in an optical trap that is translated rela- N
tive to the surrounding water molecul¢3,8]. Numerical mx+ aX = F(x,t) + 12 &o. (2)
verification of the FT was achieved by simulations of chains [\
of coupled nonlinear oscillatof®,10], of an electrical con- he f is that of . i )
duction devicq11], of the shell model of turbulendd], and The forceF(x,1) is that of a Duffing oscillator, i.e.,
of t.he Burridge-Knopoff earthqua_ke model consisting of F(x,t) = A codwt) — dVIdx, (3)
chains of blocks connected by springg.
The FT has been considered as a bridge between time- _ 2
. : : . . ; V=xY4-x%2. (4)
reversible microscopic equations of mechanics and the time-
irreversible macroscopic equations of thermodynanii@ls  Settingm=1, «=0.25,A=0.38,w=1, and&=0, this oscilla-
In this context, it is remarkable that there are versions of theor is chaotic. For the driving of this chaotic system, we set
FT which also hold for stochastic processes certainly not _
being described by reversible trajectories. One example is a Xn(t) = Xg=o(t = ¢bp) . 5)
FT formulated by Kurchan for certain diffusion processes|, gther words, thé&, are obtained by integration of Egs.

[12]. That FT was extended to general Markov processes bé‘z)—(4) with £€=0. The phase shifté, are introduced in order
to avoid thex, being correlated with each other and with
We set¢,=nT, whereT=1CP. This avoidance of correlations
*Electronic address: malte.schmick@mpi-dortmund.mpg.de could as well be accomplished with,=0 by a proper choice
"Electronic address: mario.markus@mpi-dortmund.mpg.de of different initial conditions for th&,, and x.
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FIG. 1. Probability distribution function of the mean powkr. x
=16.3(0), 20.8(00), 23.8(*), 28.2(X), and 34.1(+). _
’ Be= | = (b)
If not stated otherwise, driving was performed wéth1. T /S‘; X o
After allowing transients to die away, we set the total time to X X
1.4x 10" intervals of lengtht and determined the mean 02t XX -
powerJ. in each interval by
1 t+7
J.= —J Fxdt. (6) 01} .
TJt
Integration was performed with a Gear predictor-corrector
algorithm of fifth order with an integration time step at 0 . . . .
—10% 0 20 40 60 ¢ 80
Ill. RESULTS AND DISCUSSION 0.2 T T T T T
SettingN=1, i.e., assuming only one chaotic driving term B°° (C)
in Eq. (2), we obtained the probability distributions Jdf 0.16 ]
shown in Fig. 1. Here] .< 0 signifies work performed by the
system within the timer. The negative parts of the curves 0.12 } )
clearly become smaller asincreases, leading to the well- )
known “classical” second law of thermodynamics. The dis-
tributions in Fig. 1 yielded plots of [p(J,)/p(=J,)] versus 0.08 f 4
J., which are exemplified in Fig.(2). We obtained strikingly
linear relationships, as in the original formulation of the FT 0.04
[1-3. .
According to Eq.(1), the slopesS; of fitted straight lines
[exemplified in Fig. 2a)] should be given bys,=7/B,. We 0 . . . . .
thus plotted3,=7/S, versusr. This is shown in Fig. @), 0 02 04 06 0.8 g 1

where we see a monotonically decreasing dependgrcg,

saturating at large to an effective “temperatureB..,, as has
also beer) Obtal.ned IRC circuits with noise[16], in a t.ur' ability distributions shown in Fig. 1(b) B8,=7/S,vs 7. The S, are
bulept fluid[6], in the shell model of turbulence, and in the o slopes of straight lines fitted to plots exemplified (.
Burridge-Knopoff earthquake modg#]. A constantg, for B, reaches a saturating value for large(c) Saturating value3.,

large 7 also appears in the FT in its original forf—3]. (B, for large 7) vs the amplitudet of the chaotic driving withN
In Fig. 2c) we show the effective “temperatur@,. asa -1

function of the driving amplitud€. We clearly see thaB.,

increases as one increases the energy injected into the sys-In Fig. 3(b), we show probability distributions which are
tem. At least from that point of view, the definition of a normalized by plottingp(J,)o, versus J.=(J,-{J))/o,,
“temperature” makes some sense, although we are dealinghere, is the standard deviation @f. Figure 3b) shows
here with a dissipative system out of equilibrium consistingthat these normalized distributions are independent Bfir-

of only one particle. thermore, they roughly follow a Gaussian distribution, as has

FIG. 2. (a) In[p(J,)/p(-J,)] vs J,, as obtained from the prob-
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i i ' ] been reported for other simulations and for experiments
i [4,6,15.

The recent development of “superstatisti¢48,19, ac-
counting for fluctuations of the effective temperature in a
Gaussian distribution leads us to correct our fit to the points
for 7=43.1 in Fig. 3b) (circley. We did so by assuming a
quadratic correction terrtsee[18] ) of the probability func-
tion, obtaining a reduction of the sum of squares of residuals
from 0.018[no correction; full line in Fig. &)] to 0.012
(correction with an entropic index=1.2. A further im-
provement of the fit, considering the cubic term and specific
types of superstatistid4.8], was not possible because of the
asymmetry of our probability function owing to limitations
of computing time.

So far we assumell=1. It thus remains to examine the
effect of differentN. For N=2, i.e., for two chaotic driving
' terms in Eq.(2), we obtained the same qualitative behavior
(b) as that depicted in Figs. 1 and 2, i.e., fd=1. In other
words, chaoticity is sufficiently strong with one single uncor-
. related chaotic driving. This is exemplified in Fig(cB
(N=2), as compared with Fig.(B) (N=1). In contrast, set-
ting £€=0, i.e., assuming no chaotic driving, we do not obtain
results comparable to those presented aljsee Fig. 83)];
these distributions were found to be unaffected by doubling
the number of evaluated time intervals of lengthThe ir-
regular peaks in each distribution function in Figaj3are
7 invariant and clearly related to the dynamical properties of
the Duffing equation, while the addition of uncorrelated
chaos smoothens out these many peaks, rendering a nearly
Gaussian distributiofisee Figs. @) and 3c)].
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IV. CONCLUSIONS

In the derivation of the FT irfl], a many-particle, time
© reversible, chaotic Asonov system was assumed. It had al-
ready been demonstrated that the FT is also valid for dissi-
pative system$4—8|. Furthermore, it was also shown that a
many-particle system is not necessary if stochasticity is as-
sumed[12-14.

We could show here that a FT is obtained by considering
a single deterministically chaotic particle with three degrees
of freedom, which is driven by deterministic chaos. The sim-
. plicity of this system is even more striking if one considers
that our driving by deterministic chaos is taken from the
trajectory of the same particle in the absence of driving. It is
Y, left as a future task to find general conditions for a fluctua-

o 0 2 T 4 tion Fh_eo_rem d_escribing a single,_ chao_tically oscillating, de-

T terministic particle, such as that investigated here.
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FIG. 3. Normalized probability functiop(J,)o, vs the reduced
variableﬁ,z(J;(JT))/aT. o, standard deviation o8, (a) £=0; ACKNOWLEDGMENTS
7=7.1(0), 13.4(0), 19.6(*), and 25.8(X). (b) and (c)
7=16.3(X) and 43.1(O); the functions roughly collapse into a We thank the Deutsche Forschungsgemeinschaft for fi-
Gaussian curvéfull line) with zero mean and unit standard devia- nancial suppor{Grant No. MA 629/6. We thank Rodrigo
tion. (b) N=1. (c) N=2. Soto(Universidad de Chilgfor fruitful discussions.
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